Finding Matrices that you can multiply wrong, right

https://news.ycombinator.com/rss Hits: 3
Summary

My codegolf.stackexchange post Github Repository with experiments I went on an adventure finding NxN matrices AAA and BBB where AB=10A+B AB = 10A + B AB=10A+B. First of all, for a given candidate A, B is fixed: AB=10A+BA=10ABβˆ’1+II=10Bβˆ’1+Aβˆ’1B=10(Iβˆ’Aβˆ’1)βˆ’1B=10(I+(Aβˆ’I)βˆ’1) AB = 10A + B\\ A = 10AB^{-1} + I\\ I = 10B^{-1} + A^{-1}\\ B = 10(I - A^{-1})^{-1}\\ B = 10(I + (A - I)^{-1}) AB=10A+BA=10ABβˆ’1+II=10Bβˆ’1+Aβˆ’1B=10(Iβˆ’Aβˆ’1)βˆ’1B=10(I+(Aβˆ’I)βˆ’1) One approach is to take the eigendecomposition of A. From before, A=QΞ›AQβˆ’1B=10(Iβˆ’Aβˆ’1)βˆ’1B=10(QIQβˆ’1βˆ’QΞ›Aβˆ’1Qβˆ’1)βˆ’1B=Q(10(Iβˆ’Ξ›Aβˆ’1))Qβˆ’1 A = Q \Lambda_A Q^{-1}\\ B = 10(I - A^{-1})^{-1}\\ B = 10(Q I Q^{-1} - Q \Lambda_A^{-1} Q^{-1})^{-1}\\ B = Q(\frac{10}{(I - \Lambda_A^{-1})})Q^{-1}\\ A=QΞ›A​Qβˆ’1B=10(Iβˆ’Aβˆ’1)βˆ’1B=10(QIQβˆ’1βˆ’QΞ›Aβˆ’1​Qβˆ’1)βˆ’1B=Q((Iβˆ’Ξ›Aβˆ’1​)10​)Qβˆ’1 This shows that A, B share eigenvectors Q, and their eigenvalues are assosciated by Ξ›AΞ›B=10Ξ›A+Ξ›B \Lambda_A \Lambda_B = 10 \Lambda_A + \Lambda_B\\ Ξ›A​ΛB​=10Ξ›A​+Ξ›B​ Interestingly, this proves that AB = BA, ie our matrices commute! We can calculate the determinant of B as 10N1Ξ i(1βˆ’1Ξ»A,i)10^N \frac{1}{\Pi_i (1 - \frac{1}{\lambda_{A,i}})}10NΞ i​(1βˆ’Ξ»A,i​1​)1​ This is very suggestive, but doesn't immediately yield a way to pick a matrix A such that B is small positive integers. Because A and B share eigenvectors, B can be written as a linear combination of (I,A,A2... ANβˆ’1)(I, A, A^2 ... ~ A^{N-1})(I,A,A2... ANβˆ’1). For example, A=(124113111),B=(746364128)A = \left(\begin{array}{rrr}1 & 2 & 4 \\1 & 1 & 3 \\1 & 1 & 1\end{array}\right), B = \left(\begin{array}{rrr}7 & 4 & 6 \\3 & 6 & 4 \\1 & 2 & 8\end{array}\right)A=βŽβŽ›β€‹111​211​431β€‹βŽ βŽžβ€‹,B=βŽβŽ›β€‹731​462​648β€‹βŽ βŽžβ€‹ Ξ›A=(βˆ’6+20006+2000βˆ’1),Ξ›B=(βˆ’6+20006+2000βˆ’1)\Lambda_A = \left(\begin{array}{rrr}-\sqrt{6} + 2 & 0 & 0 \\0 & \sqrt{6} + 2 & 0 \\0 & 0 & -1\end{array}\right), \Lambda_B = \left(\begin{array}{rrr}-\sqrt{6} + 2 & 0 & 0 \\0 & \sqrt{6} + 2 & 0 \\0 & 0 & -1\end{array}\right)Ξ›A​=βŽβŽ›β€‹βˆ’6​+200​06​+20​00βˆ’1β€‹βŽ βŽžβ€‹,Ξ›B​=βŽβŽ›β€‹βˆ’6​+200​06​+20​00βˆ’1β€‹βŽ βŽžβ€‹ We observe that Ξ›B=Ξ›A2βˆ’2Ξ›A+2I\Lambda...

First seen: 2026-01-21 15:40

Last seen: 2026-01-21 17:40